Pbw Deformations of Quantum Symmetric Algebras and Their Group Extensions
نویسنده
چکیده
We examine PBW deformations of finite group extensions of quantum symmetric algebras, in particular the quantum Drinfeld orbifold algebras defined by the first author. We give a homological interpretation, in terms of Gerstenhaber brackets, of the necessary and sufficient conditions on parameter functions to define a quantum Drinfeld orbifold algebra, thus clarifying the conditions. In case the acting group is trivial, we determine conditions under which such a PBW deformation is a generalized enveloping algebra of a color Lie algebra; our PBW deformations include these algebras as a special case.
منابع مشابه
Quantum algebras and symplectic reflection algebras for wreath products
To a finite subgroup Γ of SL2(C), we associate a new family of quantum algebras which are related to symplectic reflection algebras for wreath products Sl o Γ via a functor of Schur-Weyl type. We explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras for Γ and construct for them a PBW basis. When Γ is a cyclic group, we are able to give more informati...
متن کاملUniversal property of skew P BW extensions
In this paper we prove the universal property of skew PBW extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew PBW extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Art...
متن کاملA categorical approach to classical and quantum Schur–Weyl duality
We use category theory to propose a unified approach to the Schur–Weyl dualities involving the general linear Lie algebras, their polynomial extensions and associated quantum deformations. We define multiplicative sequences of algebras exemplified by the sequence of group algebras of the symmetric groups and use them to introduce associated monoidal categories. Universal properties of these cat...
متن کاملFinite Generation of the Cohomology of Quotients of Pbw Algebras
In this article we prove finite generation of the cohomology of quotients of a PBW algebra A by relating it to the cohomology of quotients of a quantum symmetric algebra S which is isomorphic to the associated graded algebra of A. The proof uses a spectral sequence argument and a finite generation lemma adapted from Friedlander and Suslin.
متن کاملGerstenhaber Brackets on Hochschild Cohomology of Quantum Symmetric Algebras and Their Group Extensions
We construct chain maps between the bar and Koszul resolutions for a quantum symmetric algebra (skew polynomial ring). This construction uses a recursive technique involving explicit formulae for contracting homotopies. We use these chain maps to compute the Gerstenhaber bracket, obtaining a quantum version of the Schouten-Nijenhuis bracket on a symmetric algebra (polynomial ring). We compute b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015